Loading

May 06, 2012

Heat Transfer and Newton's Law of Cooling



Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy and heat between physical systems. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Heat conduction, also called diffusion, is the direct microscopic exchange of kinetic energy of particles through the boundary between two systems. When an object is at a different temperature from another body or its surroundings, heat flows so that the body and the surroundings reach the same temperature, at which point they are in thermal equilibrium. Such spontaneous heat transfer always occurs from a region of high temperature to another region of lower temperature, as required by the second law of thermodynamics.

Heat convection occurs when bulk flow of a fluid (gas or liquid) carries heat along with the flow of matter in the fluid. The flow of fluid may be forced by external processes, or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy expands the fluid (for example in a fire plume), thus influencing its own transfer. The latter process is often called "natural convection". All convective processes also move heat partly by diffusion, as well. Another form of convection is forced convection. In this case the fluid is forced to flow by use of a pump, fan or other mechanical means.

The final major form of heat transfer is by radiation, which occurs in any transparent medium (solid or fluid) but may also even occur across vacuum (as when the Sun heats the Earth). Radiation is the transfer of energy through space by means of electromagnetic waves in much the same way as electromagnetic light waves transfer light. The same laws that govern the transfer of light govern the radiant transfer of heat.

Newton's law of cooling: "The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings."

EnggExpert - Welcome to the world of Engineers.

May 04, 2012

MDU DateSheet–6th Sem–Mechanical

All of a Sudden on Facebook, there came a notification saying


”Date sheet aa gyi hai, Check it asap”
So in rush, turned over to MDU website and found out that it wasn’t a prank. In actual Date sheet was Out.
So the Dates are like :
  • 26 May 2012 – Measurement & Instrumentation
  • 30 May 2012 – Automobile Engineering
  • 2 June 2012 – Mechanical machine Design – II (4Hours Paper)
  • 6 June 2012 – Industrial Engineering
  • 9 June 2012 – Automatic Control
  • 12 June 2012– Heat Transfer
EnggExpert - Welcome to the world of Engineers.

Share

Twitter Delicious Facebook Digg Stumbleupon